Posted by: shrikantmantri | October 23, 2009

Steps in the Bacterial Flagellar Motor

via PLoS Computational Biology: New Articles by Thierry Mora et al. on 10/23/09

Author Summary

Many species of bacteria swim to find food or to avoid toxins. Swimming motility depends on helical flagella that act as propellers. Each flagellum is driven by a rotary molecular engine–the bacterial flagellar motor–which draws its energy from an ion flux entering the cell. Despite much progress, the detailed mechanisms underlying the motor’s extraordinary power output, as well as its near 100% efficiency, have yet to be understood. Surprisingly, recent experiments have shown that, at low speeds, the motor proceeds by small steps (~26 per rotation), providing new insight into motor operation. Here we show that a simple physical model can quantitatively account for this stepping behavior as well as the motor’s near-perfect efficiency and many other known properties of the motor. In our model, torque is generated via protein-springs that pull on the rotor; the steps arise from contact forces between static components of the motor and a 26-fold periodic ring that forms part of the rotor. Our model allows us to explain some curious properties of the motor, including the observation that backward steps are shorter on average than forward steps, and to make novel, experimentally testable predictions on the motor’s speed and diffusion properties.

Posted via email from Sharing significant bytes —(Shrikant Mantri)


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s


%d bloggers like this: