Posted by: shrikantmantri | October 9, 2009

High-Performance Drug Discovery: Computational Screening by Combining Dockin…

via PLoS Computational Biology: New Articles by Noriaki Okimoto et al. on 10/9/09

Author Summary

Lead discovery is one of the most important processes in rational drug design. To improve the rate of the detection of lead compounds, various technologies such as high-throughput screening and combinatorial chemistry have been introduced into the pharmaceutical industry. However, since these technologies alone may not improve lead productivity, computational screening has become important. A central method for computational screening is molecular docking. This method generally docks many flexible ligands to a rigid protein and predicts the binding affinity for each ligand in a practical time. However, its ability to detect lead compounds is less reliable. In contrast, molecular dynamics simulations can treat both proteins and ligands in a flexible manner, directly estimate the effect of explicit water molecules, and provide more accurate binding affinity, although their computational costs and times are significantly greater than those of molecular docking. Therefore, we developed a special purpose computer “MDGRAPE-3” for molecular dynamics simulations and applied it to computational screening. In this paper, we report an effective method for computational screening; this method is a combination of molecular docking and massive-scale molecular dynamics simulations. The proposed method showed a higher and more stable enrichment performance than the molecular docking method used alone.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s


%d bloggers like this: